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Chapter 3: Conditional Expectations

Lecturer: Kenneth Ng

Preview

This chapter develops the theory of conditional expectations, which formalizes how probabil-
ities and expectations adjust in light of new information. We begin by reviewing the notions
of conditional probability and independence. Then, we introduce conditional expectation in
the measure-theoretic sense and connect it to the familiar concept of conditional expectation
given an event from elementary probability theory.

Key topics in this chapter:
1. Conditional probabilities and independence;

2. Conditional expectations;

3. Tower property of conditional expectations.

1 Conditional Probabilities and Independence

We briefly review the concept of conditional probabilities, which describes the likelihood of
occurrence of an event A given the occurrence of another event B.

Definition 1.1 Let (92, F,P) be a probability space. Suppose that A, B € F with
P(B) > 0. Then, the conditional probability of A given B is defined as

P(AN B)

PIAIB) = —p g

If the occurrence of B does not change the probability of A, then A and B are said to be
independent.

Definition 1.2 The events A and B are said to be independent if
P(AN B) =P(A)P(B).
The notion of independence can be generalized to any finite collection of sets.
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Definition 1.3 Consider a collection of sets A = {A;, Ao, ..., A,} € F. The collection
is said to be
1. pairwise independent if, for any i # j,

2. mutually independent if, for any sub-collection {A;,, ..., A; } of A, where k < n,
k k
j=1 j=1

The following formulas on conditional probabilities are useful:

1. (Law of Total Probability) For any A C 2, and any exhaustive and mutually
exclusive events {B;} ; with P(B;) > 0 for i = 1,2,...,n, we have

P(A) = Z]P(A|Bn)IP(Bn).

2. (Bayes Formula) For any A, B C Q with P(A),P(B) > 0,

P(B]A)P(A)

P(AIB) =~

The notion of independence can be extended to o-algebras:

Definition 1.4 Let F and G be two o-algebras. We say that F and G are independent
if

P(AN B) =P(A)P(B)
forany A € F and B € G.

Remark 1.1. 1. By definition, the trivial o-algebra Fy = {&,Q} is independent of any
o-algebra F: for any A € F, P(AN @) =0 = P(A)P(@), and P(ANQ) = P(A4) =
P(A)P(Q).

2. If F and G are independent, and ‘H C G is a sub-c-algebra, then F and H are also
independent. Indeed, for any B € H, it also holds that B € G, and thus P(AN B) =
P(A)P(B) for any A € F, thanks to the independence of F and G.

Using the definition of independence of o-algebras, we can define the independence of two
random variables as follows:



Definition 1.5 The random variables X,Y on the probability space (€2, F,P) are said
to be independent if o(X) and o(Y') are independent o-algebras.

The following result give a characterization of independence of random variables.

Theorem 1.2 Let X and Y be random variables on (2, F,P). The following are equiv-

alent:
1. X and Y are independent;
2. For all bounded measurable functions f and g,

2 Conditional Expectations

The conditional expectation of a random variable X describes its expected value given certain
information. In this chapter, we will study three forms of conditioning: on an event, on a
o-algebra, and on another random variable.

2.1 Conditional Expectations Given an Event

We first recall the definition of the conditional expectation of X given an event A:

Definition 2.1 Let X be a random variable and A be a measurable event with P(A) > 0.
Then, the conditional expectation of X given A, E[X|A], is defined as

E[X1,]
P(A)

EX [ A] =

Suppose X, Y are two R-valued random variables. If A ={Y =y}, where Y is a random
variable and y € R, we define E[X|Y = y] as follows:

1. Discrete case: If X, Y, and the pair (X,Y) are discrete random variables with
respective probability mass functions Py, Py, and joint distribution Py y, then

BIXIY =31 = o Pante ) = o P50

2. Continuous case: If X, Y, and (X,Y) are continuous random variables with density
functions fx, fy, and fxy, then

* fX,Y(l‘ay) dr.

BXY =)= [ o pantelyde= [ T2 =
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2.2 Conditional Expectations Given a o-Algebra

Recall that a g-algebra F represents the available information. If G C F, then G encodes a
coarser, or less detailed, information set. The conditional expectation of X given G, which
emerges as a random variable, formalizes how we update the expectation X based only on
the information available in G.

Definition 2.2 Let X be an F-random variable with X € L', and G C F be a sub
o-algebra. Then, the conditional expectation of X given G, denoted by E[X|G], is the
G-measurable random variable such that, for any A € G,

E[X14] = E[Y14].

3 Properties of Conditional Expectations
The following theorem presents the fundamental properties of conditional expectations:
Theorem 3.1 (Properties of Conditional Expectation) Let X € L'(Q, F,P) and
let G C F be a sub-c-algebra.
1. (Measurability) If X is G-measurable, then E[X|G] = X a.s.

2. (Independence) If ¢(X) and G are independent, then E[X|G] = E[X] a.s.
3. (Tower Property) If H C G C F, then

E[E[X|G)|H] = E[X[H] = E[E[X|#]|]]

In particular, if we take H = Fy, we have E[E[X|G]] = E[X].
4. (Linearity) If X,Y € L! and a,b € R, then

E[aX + bY'|G] = aE[X|G] + bE[Y|G].
5. (Taking Out What’s Known) If Y is G-measurable and XY € L', then
E[XY|G] = YE[X|F].
6. (Projection Inequality) For all X, Y € L? where Y is G-measurable,
E[(X - E[X|G])Y] = 0.

7. (Non-negativity) If X > 0 a.s., then E[X|G] > 0 a.s.
8. (Monotonicity) If X <Y a.s., then E[X|G] < E[Y|F] a.s.

Proof.



1. Y = X, E[X14] = E[Y1,] for any A € G. Since Y = X is G-measurable, by
definition, E[X|G] =Y = X.

2. Let Y = E[X], which is a constant and thus G-measurable. By independence, for
any A € G, E[X14] = E[X]E[14] = E[E[X]14] = E[Y14]. By definition, we have
E[X|G] = E[X].

3. We begin by showing the first equality. To this end, it suffices to show, for any A € H,
E[X14] = E[E[E[X|G][H]14],

since E[E[X|G]|H] is H-measurable. Indeed, since A € H and H C G, we have A €
G. By the definition of E[X|G], we have E[X1,4] = E[E[X|G]1,4] for any A € H.
Now, using the definition of E[E[X|G]|H]|, we have, for any A € H, E[E[X|G]|14] =
E[E[E[X|G]|#H]14]. The claim follows by combining these two equalities.

The second equality E[X|H]| = E[E[X|H]|G] can be shown by noting that E[X|H] is
G-measurable and using the first property of the theorem.

4. The linearity is clear by noting

E[(aX + bY)14]

aE[X T 4] + DE[Y 1 4]
E[aE[X|G]1 4] + EDPE[Y|G]1 4]
E[(aE[X|G] + bE[Y'|G]) L 4],

for any A € G.

5. Suppose that Y = 15, where B € G. For any A € G, AN B € G. Using the definition
of conditional expectations,

E[XY14] = E[X1ang] = E[E[X|G|1ans] = E[YE[X|G]14].

Hence, E[XY|G] = YE[X|G] if Y = 1. By linearity, the result also holds if Y is a
simple random variable.

For general random variables Y, the result can be established through a standard
three-step procedure: first for simple random variables, then for non-negative random
variables, and finally for integrable random variables. At each step, we verify that

E[XY1,4] = E[Y E[X|G]14]

for all A € G. In particular, the second step requires the DCT. The details are omitted.
6. By the tower property and Property 5,

E[(X —EX|g])Y] = E[E[(X - E[X|G])Y|d]] = E [YE[(X — E[X|G])|F]] = 0.



7. Let A = {E[X]|G] < 0}. Note that A € G since E[X|G] is G-measurable. Assume the
contrary that P(A) > 0. By definition of conditional expectations, we have E[X 14| =
E[E[X|G]14]. Since X > 0 a.s., we have E[X1,4] > 0. However, E[E[X|G]|14] < 0,
since P(A) > 0 and E[X|G] < 0 on A. This yields a contraction and we conclude that
P(A) =0.

8. This follows by noting that Z := X —Y > 0 a.s., followed by using Properties 7 and 4.
O
Property 6 of Theorem says that the difference X — E[X|G] is orthogonal to any

square-integrable, G-measurable random variable Y. The following theorem strengthens this
geometric observation; see also Figure [T}
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Figure 1: E[X|F] is the orthogonal projection of X € L*(Q, F,P) on L?(Q,G,P)

Theorem 3.2 (L? projection of conditional expectations) The conditional expec-
tation E[X|G] is the orthogonal projection of X onto the space of all L2-integrable,
G-measurable random variables. That is, for any G-measurable Y € L2,

E[(X — E[X|g)7] <E[(X - ).

Proof. For any G-measurable random variable Y € L?,
E[(X - Y)Q}
=E [(X - E[X|g] + E[X|G] - Y)’]
[(X —E[X]G])* = 2(X - E[X|g]) (Y - E[X|g]) + (Y — E[X|G])’]
[(X E[X|G))?] - 2E[(X - E[X|G]) (Y - E[X|G])] + E [(Y — E[X|]])*]
=E[(X —E[X|G])°] + E [(Y - E[X|G])*] 2 E [(X - E?[XIQD ],

where the second-to-last line follows from Property 6 of Theorem [3.I] by noticing that
Y — E[X|G] € L*(Q,G,P). O
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Convergent theorems for expected values introduced in Chapter 2 also apply to conditional
expectations. We state the following without proofs:

Theorem 3.3 Let X € L! and G C F be a sub-o-algebra.
1. (Jensen’s Inequality) Let ¢ : R — R be a convex function such that ¢(X) € L.

Then, ¢(E[X|G]) < E[p(X)|g] as.

2. (Monotone Convergence) Let {X,,}°°, be a sequence of random variables such
that X,, T X. Then, lim,_,, E[X,|G] = E[X]F] as.

3. (Dominated Convergence) Let {X,,}22 ;| be a sequence of random variables such
that | X,| <Y as. for all n € N, where Y € L'. Then, lim,_,., E[X,|G] = E[X|]]
a.s.

3.1 Relationship of Different Notions

This section relates the conditional expectations given an event, a o-algebra, and a random
variable. The last notion is defined as follows.

Definition 3.1 Let X € L'. The conditional expectation of X given Y is defined as
EX|Y] :=E[X|o(Y)].
To compute E[X|Y], one can first determine E[X|Y = y|; see P.3 for the discussions. Let
f(y) == E[X]Y = y]. Then, E[X]Y] = f(Y).

If the o-algebra G is generated by a partition {A4,}22, of the sample space 2, we can
determine E[X|G] by computing E[X|A,] as follows:

Proposition 3.4 Let {A4,}°°, be a partition of , i.e., U, A, = Q and A, NA,, = & for
n # m, such that P(A,) > 0 for all n. Let G := 0({4,}°%,). Then, for any X € L',

E[X|G] = Z]E X|4,]1

Proof. Since A,, € G for all n, the right-hand side of the formula indeed defines a G-random
variable. For any A € G, we can write A = U2, A, , each A, € {4, }22,, since the collection
is a partition of €2. Hence,

E[X14] =

XZ]IA%

On the other hand, let Z := > > | E[X|A,]14,. Then,

ZZ La, | =) E[Z1a,]
k=1

E[Z14] =
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where we have used the DCT and Fubini’s theorem when interchanging the infinite sum-
mation and integration; the details are omitted herein. The result then follows from the
definition of conditional expectations. O
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Example 3.1 Consider a two-period binomial model with the sample space ) =
{uu, ud, du, dd}, where u and d represents an upward and a downward movement, re-
spectively. The random variable S5, which represents the value of the equity at the end
of the second period, is given by

So(uu) = 100(1.1)2, Sy(ud) = So(du) = 100(1.1)(0.8), Sy(dd) = 100(0.8).
Suppose that
P({uu}) = p*, P({ud}) = P({du}) = p(1 - p), P({dd}) = (1 - p)*,

where p € (0,1). Let X := (53 — 80);. Compute E[X|G], where G := o(U,D), U =
{uu,ud} and D = {du, dd}.

Solution. Note that UN D = @ and U U D = (. Hence,
E[X|¢] = E[X|U]Ly + E[X|D]1p
On the event U,

E[X1y] = (100 x 1.1 — 80) 1 p* + (100 x 1.1 x 0.8 — 80),p(1 — p) = p(33p + 8),
EX1y]  p(33p+38)
P(U)  p*+p(l—p)

E[X|U] = — 33p + 8.

On the event D,

E[X1p] = (100 x 0.8 x 1.1 — 80),p(1 — p) + (100 x 0.8* — 80) (1 — p)* = 8p(1 — p),



_ E[X1p] 8p(1 —p) _
XD =%m) “piopra-pp P

Therefore,
E[X|G] = (33p + 8)1y + 8plp.

]

Example 3.2 Let Q = {a, b,c,d}, F = 2Q and P be a probability measure that satisfies

P({a}) = =, P({b}) = 3 ]P’({C}) P({d}) = 5
Let X and Y be two random variables given by
X(a)=1, X(b)=1, X(c)=-1, X(d) = -1,
Y(a)=1,Y(b)=-1, Y(c)=1, Y(d) = —1.
Determine E[Y|X] and verify the partial-averaging property, E[E[Y|X]] = E[Y].
Solution.  Note that o(X) = o({a,b},{c,d}). Let A; = {a,b} and Ay = {¢, d}, we can

write

E[Y|X] = E[Y|o(X)] = E[Y[A1]14, + E[Y[As]Ly,.
With P(4r) = b+ =4, P(4) =1+ = 1,

E[Y Ly = Y (B({a}) + YR = 5 - 3 = =

E[Y1,] —3 1
ElY|A{] = U _ 6 __ -
Y14l =) = T =5
1 1
E[Y L] = Y(OR({e) + Y (@P{d}) = 5 - =0,
]E[Y]lA ]
E[Y|Ay] = 2 =0.
P(4;)
Hence,
1
E[Y|X] = —gllAl.
Next, we verify the partial-averaging property. Note that
1 1 1 1 1
EY|=1x=-4(-1)XxX=4+1x=-4(-1)x-=—-.
[¥l=1xg+(Dxz+1xg+(Dx ;=5

On the other hand,

and so E[Y] = E[E[Y|X]].
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