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Preview
This chapter develops the theory of conditional expectations, which formalizes how probabil-
ities and expectations adjust in light of new information. We begin by reviewing the notions
of conditional probability and independence. Then, we introduce conditional expectation in
the measure-theoretic sense and connect it to the familiar concept of conditional expectation
given an event from elementary probability theory.

Key topics in this chapter:
1. Conditional probabilities and independence;

2. Conditional expectations;

3. Tower property of conditional expectations.

1 Conditional Probabilities and Independence
We briefly review the concept of conditional probabilities, which describes the likelihood of
occurrence of an event A given the occurrence of another event B.

Definition 1.1 Let (Ω,F ,P) be a probability space. Suppose that A,B ∈ F with
P(B) > 0. Then, the conditional probability of A given B is defined as

P(A|B) :=
P(A ∩B)

P(B)
.

If the occurrence of B does not change the probability of A, then A and B are said to be
independent.

Definition 1.2 The events A and B are said to be independent if

P(A ∩B) = P(A)P(B).

The notion of independence can be generalized to any finite collection of sets.
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Definition 1.3 Consider a collection of sets A = {A1, A2, . . . , An} ⊆ F . The collection
is said to be

1. pairwise independent if, for any i ̸= j,

P(Ai ∩ Aj) = P(Ai)P(Aj);

2. mutually independent if, for any sub-collection {Ai1 , . . . , Aik} of A, where k ≤ n,

P

(
k⋂

j=1

Aij

)
=

k∏
j=1

P(Aij).

The following formulas on conditional probabilities are useful:

1. (Law of Total Probability) For any A ⊆ Ω, and any exhaustive and mutually
exclusive events {Bi}ni=1 with P(Bi) > 0 for i = 1, 2, . . . , n, we have

P(A) =
n∑

i=1

P(A|Bn)P(Bn).

2. (Bayes Formula) For any A,B ⊆ Ω with P(A),P(B) > 0,

P(A|B) =
P(B|A)P(A)

P(B)
.

The notion of independence can be extended to σ-algebras:

Definition 1.4 Let F and G be two σ-algebras. We say that F and G are independent
if

P(A ∩B) = P(A)P(B)

for any A ∈ F and B ∈ G.

Remark 1.1. 1. By definition, the trivial σ-algebra F0 = {∅,Ω} is independent of any
σ-algebra F : for any A ∈ F , P(A ∩ ∅) = 0 = P(A)P(∅), and P(A ∩ Ω) = P(A) =
P(A)P(Ω).

2. If F and G are independent, and H ⊆ G is a sub-σ-algebra, then F and H are also
independent. Indeed, for any B ∈ H, it also holds that B ∈ G, and thus P(A ∩ B) =
P(A)P(B) for any A ∈ F , thanks to the independence of F and G.

Using the definition of independence of σ-algebras, we can define the independence of two
random variables as follows:
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Definition 1.5 The random variables X, Y on the probability space (Ω,F ,P) are said
to be independent if σ(X) and σ(Y ) are independent σ-algebras.

The following result give a characterization of independence of random variables.

Theorem 1.2 Let X and Y be random variables on (Ω,F ,P). The following are equiv-
alent:

1. X and Y are independent;
2. For all bounded measurable functions f and g,

E[f(X)g(Y )] = E[f(X)]E[g(Y )].

2 Conditional Expectations
The conditional expectation of a random variable X describes its expected value given certain
information. In this chapter, we will study three forms of conditioning: on an event, on a
σ-algebra, and on another random variable.

2.1 Conditional Expectations Given an Event

We first recall the definition of the conditional expectation of X given an event A:

Definition 2.1 Let X be a random variable and A be a measurable event with P(A) > 0.
Then, the conditional expectation of X given A, E[X|A], is defined as

E[X | A] = E[X1A]

P(A)
.

Suppose X, Y are two R-valued random variables. If A = {Y = y}, where Y is a random
variable and y ∈ R, we define E[X|Y = y] as follows:

1. Discrete case: If X, Y , and the pair (X, Y ) are discrete random variables with
respective probability mass functions PX , PY , and joint distribution PX,Y , then

E[X|Y = y] =
∑
x

xPX|Y (x | y) =
∑
x

x
PX,Y (x, y)

PY (y)
.

2. Continuous case: If X, Y , and (X, Y ) are continuous random variables with density
functions fX , fY , and fX,Y , then

E[X|Y = y] =

∫ ∞

−∞
x fX|Y (x | y) dx =

∫ ∞

−∞
x
fX,Y (x, y)

fY (y)
dx.
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2.2 Conditional Expectations Given a σ-Algebra

Recall that a σ-algebra F represents the available information. If G ⊆ F , then G encodes a
coarser, or less detailed, information set. The conditional expectation of X given G, which
emerges as a random variable, formalizes how we update the expectation X based only on
the information available in G.

Definition 2.2 Let X be an F -random variable with X ∈ L1, and G ⊆ F be a sub
σ-algebra. Then, the conditional expectation of X given G, denoted by E[X|G], is the
G-measurable random variable such that, for any A ∈ G,

E[X1A] = E[Y 1A].

3 Properties of Conditional Expectations
The following theorem presents the fundamental properties of conditional expectations:

Theorem 3.1 (Properties of Conditional Expectation) Let X ∈ L1(Ω,F ,P) and
let G ⊆ F be a sub-σ-algebra.

1. (Measurability) If X is G-measurable, then E[X|G] = X a.s.
2. (Independence) If σ(X) and G are independent, then E[X|G] = E[X] a.s.
3. (Tower Property) If H ⊆ G ⊆ F , then

E[E[X|G]|H] = E[X|H] = E[E[X|H]|G]

In particular, if we take H = F0, we have E[E[X|G]] = E[X].
4. (Linearity) If X, Y ∈ L1 and a, b ∈ R, then

E[aX + bY |G] = aE[X|G] + bE[Y |G].

5. (Taking Out What’s Known) If Y is G-measurable and XY ∈ L1, then

E[XY |G] = Y E[X|G].

6. (Projection Inequality) For all X, Y ∈ L2 where Y is G-measurable,

E[(X − E[X|G])Y ] = 0.

7. (Non-negativity) If X ≥ 0 a.s., then E[X|G] ≥ 0 a.s.
8. (Monotonicity) If X ≤ Y a.s., then E[X|G] ≤ E[Y |G] a.s.

Proof.
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1. If Y = X, E[X1A] = E[Y 1A] for any A ∈ G. Since Y = X is G-measurable, by
definition, E[X|G] = Y = X.

2. Let Y = E[X], which is a constant and thus G-measurable. By independence, for
any A ∈ G, E[X1A] = E[X]E[1A] = E[E[X]1A] = E[Y 1A]. By definition, we have
E[X|G] = E[X].

3. We begin by showing the first equality. To this end, it suffices to show, for any A ∈ H,

E[X1A] = E[E[E[X|G]|H]1A],

since E[E[X|G]|H] is H-measurable. Indeed, since A ∈ H and H ⊆ G, we have A ∈
G. By the definition of E[X|G], we have E[X1A] = E[E[X|G]1A] for any A ∈ H.
Now, using the definition of E[E[X|G]|H], we have, for any A ∈ H, E[E[X|G]1A] =
E[E[E[X|G]|H]1A]. The claim follows by combining these two equalities.

The second equality E[X|H] = E[E[X|H]|G] can be shown by noting that E[X|H] is
G-measurable and using the first property of the theorem.

4. The linearity is clear by noting

E[(aX + bY )1A] = aE[X1A] + bE[Y 1A]

= E[aE[X|G]1A] + E[bE[Y |G]1A]

= E[(aE[X|G] + bE[Y |G])1A],

for any A ∈ G.

5. Suppose that Y = 1B, where B ∈ G. For any A ∈ G, A ∩ B ∈ G. Using the definition
of conditional expectations,

E[XY 1A] = E[X1A∩B] = E[E[X|G]1A∩B] = E[Y E[X|G]1A].

Hence, E[XY |G] = Y E[X|G] if Y = 1B. By linearity, the result also holds if Y is a
simple random variable.

For general random variables Y , the result can be established through a standard
three-step procedure: first for simple random variables, then for non-negative random
variables, and finally for integrable random variables. At each step, we verify that

E[XY 1A] = E[Y E[X|G]1A]

for all A ∈ G. In particular, the second step requires the DCT. The details are omitted.

6. By the tower property and Property 5,

E[(X − E[X|G])Y ] = E [E [(X − E[X|G])Y |G]] = E [Y E[(X − E[X|G])|G]] = 0.
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7. Let A = {E[X|G] < 0}. Note that A ∈ G since E[X|G] is G-measurable. Assume the
contrary that P(A) > 0. By definition of conditional expectations, we have E[X1A] =
E[E[X|G]1A]. Since X ≥ 0 a.s., we have E[X1A] ≥ 0. However, E[E[X|G]1A] < 0,
since P(A) > 0 and E[X|G] < 0 on A. This yields a contraction and we conclude that
P(A) = 0.

8. This follows by noting that Z := X−Y ≥ 0 a.s., followed by using Properties 7 and 4.

Property 6 of Theorem 3.1 says that the difference X − E[X|G] is orthogonal to any
square-integrable, G-measurable random variable Y . The following theorem strengthens this
geometric observation; see also Figure 1.

L2(Ω,G,P)

E[X|G]

X

X − E[X|G]

0

Figure 1: E[X|G] is the orthogonal projection of X ∈ L2(Ω,F ,P) on L2(Ω,G,P)

Theorem 3.2 (L2 projection of conditional expectations) The conditional expec-
tation E[X|G] is the orthogonal projection of X onto the space of all L2-integrable,
G-measurable random variables. That is, for any G-measurable Y ∈ L2,

E
[
(X − E[X|G])2

]
≤ E

[
(X − Y )2

]
.

Proof. For any G-measurable random variable Y ∈ L2,

E
[
(X − Y )2

]
= E

[
(X − E[X|G] + E[X|G]− Y )2

]
= E

[
(X − E[X|G])2 − 2 (X − E[X|G]) (Y − E[X|G]) + (Y − E[X|G])2

]
= E

[
(X − E[X|G])2

]
− 2E [(X − E[X|G]) (Y − E[X|G])] + E

[
(Y − E[X|G])2

]
= E

[
(X − E[X|G])2

]
+ E

[
(Y − E[X|G])2

]
≥ E

[
(X − E[X|G])2

]
,

where the second-to-last line follows from Property 6 of Theorem 3.1, by noticing that
Y − E[X|G] ∈ L2(Ω,G,P).
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Convergent theorems for expected values introduced in Chapter 2 also apply to conditional
expectations. We state the following without proofs:

Theorem 3.3 Let X ∈ L1 and G ⊆ F be a sub-σ-algebra.
1. (Jensen’s Inequality) Let φ : R → R be a convex function such that φ(X) ∈ L1.

Then, φ(E[X|G]) ≤ E[φ(X)|G] a.s.
2. (Monotone Convergence) Let {Xn}∞n=1 be a sequence of random variables such

that Xn ↑ X. Then, limn→∞ E[Xn|G] = E[X|G] a.s.
3. (Dominated Convergence) Let {Xn}∞n=1 be a sequence of random variables such

that |Xn| ≤ Y a.s. for all n ∈ N, where Y ∈ L1. Then, limn→∞ E[Xn|G] = E[X|G]
a.s.

3.1 Relationship of Different Notions

This section relates the conditional expectations given an event, a σ-algebra, and a random
variable. The last notion is defined as follows.

Definition 3.1 Let X ∈ L1. The conditional expectation of X given Y is defined as
E[X|Y ] := E[X|σ(Y )].

To compute E[X|Y ], one can first determine E[X|Y = y]; see P.3 for the discussions. Let
f(y) := E[X|Y = y]. Then, E[X|Y ] = f(Y ).

If the σ-algebra G is generated by a partition {An}∞n=1 of the sample space Ω, we can
determine E[X|G] by computing E[X|An] as follows:

Proposition 3.4 Let {An}∞n=1 be a partition of Ω, i.e., ∪nAn = Ω and An ∩Am = ∅ for
n ̸= m, such that P(An) > 0 for all n. Let G := σ({An}∞n=1). Then, for any X ∈ L1,

E[X|G] =
∞∑
n=1

E[X|An]1An .

Proof. Since An ∈ G for all n, the right-hand side of the formula indeed defines a G-random
variable. For any A ∈ G, we can write A = ∪∞

k=1Ank
, each Ank

∈ {An}∞n=1, since the collection
is a partition of Ω. Hence,

E[X1A] = E

[
X

∞∑
k=1

1Ank

]
On the other hand, let Z :=

∑∞
n=1 E[X|An]1An . Then,

E [Z1A] = E

[
Z

∞∑
k=1

1Ank

]
=

∞∑
k=1

E[Z1Ank
]
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=
∞∑
k=1

E

[(
∞∑
n=1

E[X|An]1An

)
1Ank

]

=
∞∑
k=1

E
[
E[X|Ank

]1Ank

]
=

∞∑
k=1

E[X|Ank
]P(Ank

)

=
∞∑
k=1

E[X1Ank
]

= E

[
X

∞∑
k=1

1Ank

]
= E[X1A],

where we have used the DCT and Fubini’s theorem when interchanging the infinite sum-
mation and integration; the details are omitted herein. The result then follows from the
definition of conditional expectations.

Example 3.1 Consider a two-period binomial model with the sample space Ω =
{uu, ud, du, dd}, where u and d represents an upward and a downward movement, re-
spectively. The random variable S2, which represents the value of the equity at the end
of the second period, is given by

S2(uu) = 100(1.1)2, S2(ud) = S2(du) = 100(1.1)(0.8), S2(dd) = 100(0.8)2.

Suppose that

P({uu}) = p2, P({ud}) = P({du}) = p(1− p), P({dd}) = (1− p)2,

where p ∈ (0, 1). Let X := (S2 − 80)+. Compute E[X|G], where G := σ(U,D), U =
{uu, ud} and D = {du, dd}.

Solution. Note that U ∩D = ∅ and U ∪D = Ω. Hence,

E[X|G] = E[X|U ]1U + E[X|D]1D.

On the event U ,

E[X1U ] = (100× 1.12 − 80)+p
2 + (100× 1.1× 0.8− 80)+p(1− p) = p(33p+ 8),

E[X|U ] =
E[X1U ]

P(U)
=

p(33p+ 8)

p2 + p(1− p)
= 33p+ 8.

On the event D,

E[X1D] = (100× 0.8× 1.1− 80)+p(1− p) + (100× 0.82 − 80)+(1− p)2 = 8p(1− p),
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E[X|D] =
E[X1D]

P(D)
=

8p(1− p)

p(1− p) + (1− p)2
= 8p.

Therefore,
E[X|G] = (33p+ 8)1U + 8p1D.

Example 3.2 Let Ω = {a, b, c, d}, F = 2Ω, and P be a probability measure that satisfies

P({a}) = 1

6
, P({b}) = 1

3
, P({c}) = 1

4
, P({d}) = 1

4
.

Let X and Y be two random variables given by

X(a) = 1, X(b) = 1, X(c) = −1, X(d) = −1,

Y (a) = 1, Y (b) = −1, Y (c) = 1, Y (d) = −1.

Determine E[Y |X] and verify the partial-averaging property, E[E[Y |X]] = E[Y ].

Solution. Note that σ(X) = σ({a, b}, {c, d}). Let A1 = {a, b} and A2 = {c, d}, we can
write

E[Y |X] = E[Y |σ(X)] = E[Y |A1]1A1 + E[Y |A2]1A2 .

With P(A1) =
1
6
+ 1

3
= 1

2
, P(A2) =

1
4
+ 1

4
= 1

2
,

E[Y 1A1 ] = Y (a)P({a}) + Y (b)P({b}) = 1

6
− 1

3
= −1

6
,

E[Y |A1] =
E[Y 1A1 ]

P(A1)
=

−1
6

1
2

= −1

3
,

E[Y 1A2 ] = Y (c)P({c}) + Y (d)P({d}) = 1

4
− 1

4
= 0,

E[Y |A2] =
E[Y 1A2 ]

P(A2)
= 0.

Hence,

E[Y |X] = −1

3
1A1 .

Next, we verify the partial-averaging property. Note that

E[Y ] = 1× 1

6
+ (−1)× 1

3
+ 1× 1

4
+ (−1)× 1

4
= −1

6
.

On the other hand,

E[E[Y |X]] = E
[
−1

3
1A1

]
= −1

3
P(A1) =

1

6
,

and so E[Y ] = E[E[Y |X]].
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